
High Energy Accelerator Simulation

and Parallel Computing �

A.U. Luccio, N.L. D'Imperio

Brookhaven National Laboratory, Upton, NY

J.D. Galambos, OakRidge National Laboratory, OR, TN

August 16, 2000

Abstract

Simulation of the dynamics of a particle beam in an accelerator can

be done by using a "herd" of representative macroparticles randomly gen-

erated. Particles are propagated through the accelerator lattice using

transfer maps, consisting of matrices in the six dimensional particle phase

space, and higher order transformations. In the presence of space charge

e�ects, i.e. for high intensity beams, the interaction between macroparti-

cles and between macros and accelerator chamber walls becomes impor-

tant and in some case is the dominating e�ect, leading to the formation

of beam halo. Computing can be very demanding and time consuming.

Parallel computing is the only practical solution. We will present results

and comparison for parallel computing using both an IBM cluster and a

PC farm for two problems: simulation with the code Orbit of the intense

proton beam in the Oak Ridge Spallation Neutron Source 1 GeV accu-

mulator ring, and of the polarized proton beam for the RHIC collider at

Brookhaven with the code Spink.

1 Accelerator simulation

Numerical simulation of particle accelerators using representative \macro par-
ticles" is important for: (i) the design of new accelerators, (ii) understand and
optimize existing accelerators, and (iii) model-based control of accelerators. Ac-
celerator simulation involve the repeated solution of equations of the dynamics
of a \herd" of relativistic particles in electro-magnetic �elds, produced by ac-
celerator modules (magnets and RF cavities) and by the particles themselves
(space charge forces in the presence of accelerator chamber walls).

�Work performed under the auspices of the U.S.Department of Energy.

1

1.1 Design of new accelerators

Similarly to what is being done in other �elds of technology, like in the aircraft
industry, the design of new accelerators make extensive use of computer simu-
lation. In the US important examples of high current (space charge dominated)
and high energy accelerators are
� The Spallation Neutron Source[1]. The SNS is a new 1.36 Billion facility
funded by DOE, to be built at Oak Ridge National Laboratory. It will provide
high-energy protons to be sent against a Mercury target to generate, in turn,
2 MW neutron bursts for research. The SNS is being designed and built as a
collaboration between national laboratories. Its accelerator components are a
1 GeV proton linac, followed by a 1 GeV proton accumulator. Los Alamos is
in charge of the linac, Brookhaven of the accumulator ring. A very high beam
current characterizes the accumulator. One of the challenges is to minimize
beam losses. Fig. 1 shows the SNS installation, its linac, ring, and target to
produce neutrons.

Figure 1: The SNS accelerator complex at Oak Ridge.

� The Relativistic Heavy Ion Collider, RHIC[2]. RHIC consistes of two super-
conducting counter-rotating rings, that intersects in six points. Particles (250

2

GeV protons and heavy ions up to Gold, 100 GeV/u) are brought to collisions
in these intersections. Fig. 2 shows the RHIC accelerator complex, consisting
of a cascade of various accelerators.

Figure 2: The RHIC accelerator complex at Brookhaven.

� The Muon-Muon Collider[3]. This is the ultimate machine for basic particle
physics research being studied in various US laboratories, to collide high energy
beams of muons against each other.

1.2 Optimization of the operation of accelerators

An example: the Alternating Ring Synchrotron at Brookhaven. The AGS is
the highest intensity proton machine in the world. The machine also accelerates
heavy ions and is presently used as the injector for RHIC. Although extensively
and continuously studied for decades, the AGS still o�ers wide margins of im-
provements, to obtain higher currents under low beam losses. Beam simulation
is an essential tool for this task. It helps understand the behavior of the beam,
and suggests di�erent operation modes.
To give some feeling of the problems encountered in simulate a synchrotron like
the AGS for studies and optimization, look at Fig. 3. This �gure represent real
data for a Mountain Plot for the AGS Booster, i.e. a plot of the longitudinal
measured pro�le of the beam for successive turns. The beam pro�le is controlled

3

by the shape of the RF wave, that in this case has a fundamental plus a second
harmonic. A tracking program like Orbit, described later in this paper, can
reproduce the mountain Range and explain some of its details

Figure 3: An experimental Mountain Range plot for the AGS Booster.

1.3 Model based accelerator control

Computers increasingly control accelerators. The control system is based on
models, therefore on simulation. A computer environment is being created to
integrate models and codes in a single unity. Extensive studies for accelerator
control are underway for several machine in di�erent laboratories.
At Brookhaven, for the AGS and RHIC the model based control has reached
a high level of sophistication. Likewise, for the SNS accumulator ring, an im-

4

portant area of activity is the implementation of the model based control system.

An ideal model based control of any machine operation is one in which the
operator should not in principle be aware whether he is working on the real or
the model machine. Therefore the model should run in real time, which is diÆ-
cult for an accelerator, that moves on very fast. For instance, in a synchrotron,
the whole cycle of acceleration takes place in a fraction of a second, and in a
cycle the beam performs thousands of turns. So, one is obliged to average data
taken from the machine as input and commands issued to the machine as output
of the control software over many turns. Even so, the challenges on the speed
of running simulation codes are great.

2 Accelerator components

The physics of an accelerator is based on the study of the relativistic equations
of motion of a particle in an electric and magnetic �eld

d(~�)
dt

= q
mc

h
~E + c~� � ~B � ~�

�
~� � ~E

�i
d
dt

= q
mc
~� � ~E

(1)

with the de�nitions

m = m0; ~� =
~v

c
; =

1p
1� �2

(2)

and q andm the charge and mass of the particle, m0 its rest mass, mc
2 = m0c

2

its total energy, ~E the electric �eld, ~B the magnetic �eld, and c the speed of
light. From Eq. (2) note how the particle energy, proportional to , increases
with its velocity. Equation (1) shows that to be e�ective to accelerate a particle
on a curved trajectory, the electric �eld must have a non vanishing component
parallel to the particle velocity and a magnetic �eld perpendicular to it.
Electro-magnetic �elds are created by machine elements or modules, arranged
in the lattice of the accelerator. The lattice contains magnets that provide mag-
netic �elds ~B , perpendicular to the orbit, and radio frequency cavities that
provide electric �elds ~E, parallel to the orbit. Magnets can in turn be distin-
guished between (i) dipoles to bend the particle motion along a closed path,
or to correct the orbit with angle kicks, and (ii) multi-pole magnet, that exert
focusing forces on the particles.
Among multi-poles are the quadrupoles, equivalent to lenses for the particle
beam, whose function is to maintain all the particles within the vacuum cham-
ber of the accelerator, and sextupoles that provide for correction of particle of
di�erent energy within the beam (Chromaticity).
A general expression for the \strength" of a magnet of order n (n = 0 is a
dipole) is

Kn =
q

p

@nBy

@xn
(3)

5

where x and y are the transverse coordinate of the position of a particle along
the accelerator with respect to a reference orbit. A multi-pole magnet imparts
to the particle an angle kick proportional to Kn and to the n-th power of the
displacement, x or y from the reference orbit. Quadrupoles (n = 1) give a linear
kick and produce harmonic oscillations of the orbit.
Electric �elds are provided by RF cavities to accelerate particle along their orbit.
They increase the particle longitudinal momentummv, by increasing their mass,
Eq. (2), and their velocity (not to exceed the speed of light).

3 Accelerator models and algorithms

Accelerator models are based �rst on single particle dynamics, where parti-
cles don't interact with each other (low current machines or machines in the
approximation of low current), and then on multi particle dynamics, dealing
with particles interacting with each other and with the environment (accelera-
tor chamber walls). Single particle calculations are needed to provide input to
multi particle codes.

3.1 Single particle dynamics

A particle is represented by a vector in a 6 dimensional phase space

~r = (x; px; y; py; c�t;�p=p) (4)

with x and y the transverse coordinates, px and py the components of the
transverse momentum, �t the deviation of the given particle, in time, from the
\synchronous" or \ideal" particle, and �p its deviation in longitudinal momen-
tum (which is very close to the total momentum of the particle).
During the calculation, ~r is transformed from an accelerator module to the next,
along the lattice of the machine by a map. This map must obey symplecticity
conditions to insure that the relevant physical invariants are conserved. Im-
portant invariant is the Hamiltonian of the system, a function of the particle
coordinates and of the electro-magnetic �eld through which they move

H =

r
1

c2
(E � q�)

2
� (mc)2 �

�
~p� q ~A

�2
(5)

with � the electric potential and A the magnetic potential. H represent the
total energy of the system. To �rst order, a symplectic map is a matrix that
represents a rotation of ~r in phase space.
The chain of transformations along the accelerator structure in the single parti-
cle approximation is calculated by optics codes. They take as input the physical
parameters of the various accelerator modules, magnets, cavities and the like
and their arrangement in the lattice and produce the transformation maps.
They also decide if the lattice is stable and what the envelope of the beam is
going to be in absence of inter particle forces. Among optics codes, well know

6

and extensively used are
� Mad (Methodical Accelerator Design)[4]. The CERN version can be down-
loaded from the Web. A di�erent variation of Mad is also used at Brookhaven.
The standard version is in Fortran77, another version in C++ is still experi-
mental.
Mad allows one to design and optimize a machine lattice, by using a \thick" ele-
ment description of accelerator modules. it is very popular to provide the lattice
and the transformation maps to other codes. Mad contains tracking capabilities,
but it is \static" in nature, i.e. it cannot describe some of the processes where
lattice parameters are dynamically varied during tracking, e.g. the acceleration.
� Marylie[5]. From the University of Maryland, produces maps of high order
for orbit transfer under symplectic conditions. These maps are calculated using
Lie algebra methods.
� Teapot[6]. Developed at Cornell and extensively used at Brookhaven for the
RHIC and SNS projects. It is a \thin" element code. Teapot forms the basis for
the Accelerator Uni�ed Library (AUL) database and control software[7].

An important feature of several optical codes, particularly highly developed
in Mad, is \matching". It allows one to match the accelerator lattice to speci�c
conditions, using numerical iterative algorithms of the Simplex, or Migrad type.
Matching can be used to optimize the design of a lattice.

4 Multi particle dynamics. Tracking

A multitude of particles, or \herd", randomly generated is \injected" in the
machine lattice generated by the optics code and their representative vector,
de�ned in Eq.(4) is moved from a module to the next. Representative points are
plotted at given intervals, or once per turn in a circular high energy accelerator.
If the intensity of the beam is low, there are no collective e�ects and the particles
in the beam propagate only in the external �elds, independent of each other.

4.1 Tracking with Space charge

For high intensities, when space charge forces are present, tracking proceeds as
follows: individual macro particle coordinates are transferred from a machine
element to the next by maps, as individual particles. Particles are binned on a
mesh to �nd the charge density �(P). Space charge forces are then calculated
and applied to each particles P producing an angle kick according to Eq. (8).
And so on, through the next element..
A way to avoid repeating the binning process at each step is to transform the
density � from element (lattice node) to the next, using the element maps. By
treating the charge density like in an image in optics of light, it has been sug-
gested to employ well developed numerical techniques involving, e.g. wavelets.
Another possible method is to scale, or \rubber-band" the density distribution
according to the local envelope of the beam (as calculated in the single particle

7

approximation).
The properties and possible advantages of this methods in terms of computer
speed have not been explored yet.

4.2 More on the space charge problem

Lets discuss to some extent the space charge problem, because it is very relevant
to Parallel Computing.
Numerical handling of space charge is one of the most computer intensive prob-
lems in particle tracking[8]. It requires a simulation with many macro particles,
each representing a multitude of real particles, the \herd", that continuously
exert forces on each other due to their electric charge and current. Space charge
is treated in the full 6-dimensional phase space of the particles (3 components of
the position q and 3 of the momentum p) or only in the 4-dimensional transverse
space with correction for the longitudinal dimensions.
The particle beam in a circular accelerator is generally a long structure that
occupies a good fraction of the entire length of the accelerator (vacuum) cham-
ber. Depending on the harmonic mode of the accelerating electric �eld there
may be one or more beam \bunches" in a turn. The aspect ratio of a bunch
is of mm to cm in the transverse x; y dimension to meters or tens of m in the
longitudinal z. Individual particles perform oscillations within the beam around
the equilibrium, or \design" orbit and along the length of the bunch.
Particles in the beam have the same electric charge, therefore they repel each
other electrostatically. They are also equivalent to current elements, and these
elementary currents attract each other. With considerations of elementary elec-
trodynamics, by applying Gauss's and Ampere's laws to a small volume of space,
the net force shows to be still repulsive, but decreasing as 1=2. This means
that when the velocity of the particle approaches the speed of light c, the space
charge force vanish, i.e. space charge forces are less and less important at high
energies. Fig. 4 shows the force �eld in one transverse direction for a quasi-
gaussian beam charge distribution, as calculated by Orbit (see Sect. 5).
Space charge treatment involves the inversion of the Poisson problem in the
presence of boundaries. Intra-particle forces are calculated from the electric
and magnetic �elds generated by the beam on itself. Denoting the charge den-
sity with �, the potential � in the beam, with the 1=2 factor, is calculated by
solving the Poisson di�erential equation

r2� = �4�� (6)

Poisson solvers can be written by using a \brute force" method, by direct inte-
gration over the space charge density

�(P) =
C

2

Z Z Z
�(Q)

jP �Qj+ �
dQ (7)

where Q = ~rs position of each particle, considered as a source (including im-
age charges and currents induced on the walls), and dQ = dx dy dz elementary

8

Figure 4: Horizontal component of the Space Charge force for a Gaussian beam.

source volume. Eq. (7) calculates the potential at each location P = ~r, position
of a particle acted upon by the �eld. � is a smoothing factor to avoid in�nities,
and C a constant depending on the unities.
The Poisson equation can also be solved by transforming the integral of Eq. (7)
to a convolution, by �rst taking a 2- or 3-dimension FFT of the charge density
pro�le on a �xed or variable size mesh.
Once the potential, and then the forces by derivation, are calculated, a momen-
tum kick is applied to each macro particle according to

�~p =

Z
~F dt (8)

Eq.(7) can be very lengthy to solve. An approximation is to integrate separately
the transverse motion (x; y) and the longitudinal motion in z. I.e. to write the
charge density as

�(x; y; z) = �k(z)�?(x; y) (9)

and treat �k as a constant for a longitudinal slice of a beam bunch. The ap-
proximation is often acceptable, because in a circular accelerator the transverse
motion of the particles within the beam (betatron oscillation) is much faster

9

than the longitudinal motion (synchrotron oscillation). With the position (9)
the integral of Eq. (7) e�ectively loses a dimension. We may say that the code
operates not in 3 but in \2-and-a-half" dimensions.

4.3 Poisson Solver based on LU Decomposition

Inversion of the Poisson equation in di�erential form can also be brought to the
inversion of system of linear equations. Let us discretize the charge density �
and the potential � at the corners of a mesh (i; j) and write Eq. (6) as

�4��ij = Lkl
ij�kl (10)

where Q = (ij) is a discrete Source point and P = (kl) a Field point, and the
repetition of indeces implies a sum. The inversion of the Poisson equation is
then performed as

�(P) = �
1

4�
L�1�(Q) (11)

with an inversion of the matrix L. From the de�nition of the Laplacian (in 2
dimensions)

r2 �
@2

@x2
+

@2

@y2
(12)

L can be written using a di�erence expression for the second partial derivatives
as

Lkl
ij = �4Æki Æ

l
j + Æki+1Æ

l
j + Æki�1Æ

l
j + Æki Æ

l
j+1 + Æki Æ

l
j�1 (13)

where Æ = 0;�1 and the grid spacing is normalized to one. The Laplacian ma-
trix L is large (size n4), with n the number of grid points, but rather sparse.
Because it is independent of the grid size, it has to be inverted only once, at the
beginning of the tracking computation.
Several observations are in order.
� It is straightforward to express L in three dimensions, and treat with the LU
method the space charge problem in 3D. The 3D problem can be thus naturally
treated. In 3D, the matrix dimension will be n6, rather formidable, however the
matrix is sparse, as we noticed, but it ought to be inverted only once in vacuum.
There are also several eÆcient algorithms to perform this inversion with parallel
computation.
� If we are not happy with the linear di�erence expression of the partial deriva-
tives in the Laplacian, we can use a higher order formulation on 7 or more grid
points (10 or more in 3D). Of course, the matrix becomes a little less sparse.
� From the potential � the actual force can be immediately calculated by dif-
ferentiation. In fact, we may choose to express directly the force �eld without
calculating the potential �rst, as follows (in 2D)

Fx =
d
x

�
L�1�

�
=
�
d
x
L�1

�
�

Fy =
d
y

�
L�1�

�
=
�
d
y
L�1

�
�

(14)

10

The di�erentiation is done with respect to the Field point coordinates and
doesn't operate on �, that is a function of the Source point coordinates.
� When applying the above, a problem immediately arises. If the independent
variable in tracking is time, then macroparticles in the herd that have started
their journey together will arrive at a given time at di�erent positions in the
accelerator, because they may have di�erent velocities or, mostly important in
high energy machines, because they have followed paths of di�erent length. If
the independent variable is distance along the lattice, di�erent particles will
arrive at a given node at di�erent time. The meaning of derivatives will change.

4.4 Walls and Impedances

The beam moves in an accelerator chamber where a high vacuum is maintained.
Chamber walls are metallic or metal coated ceramic. The beam induces image
charges and currents on the walls. They, in turn apply electric and magnetic
forces on the beam. Moreover, �elds remain for some time in the chamber after
the beam is gone (wake �elds) and in a circular accelerator can interact with the
beam at successive turns, creating instabilities and beam break-up. Walls are
reasonably smooth, but vacuum pump openings and other irregularities gener-
ate a very complicated environment where boundary become hard to code. A
detailed study implies a careful modeling of the wall geometry, subdivided in
many small partitions.
To reduce the burden of wall-to-beam interaction calculation, the e�ect of walls
can be e�ectively studied by using e�ective impedances Zn [9]. These are com-
plex quantities, one for each n-th Fourier component of the beam density pro�le.
Longitudinal and transverse impedance are calculated for a given wall geome-
try. They constitute the \impedance budget" for the accelerator. Wall induced
additional (complex) voltage kicks on the beam are calculated in the frequency
domain with

Vn = InZn cos (n!t+ �n) (15)

Kicks are thereafter transformed back to the time domain. The calculation of
the impedance budget for a given geometry is a priori performed by specialized
codes.

Longitudinal impedances are a more manageable set than transverse impedances.
One reason is that in a conventional high energy accelerator the longitudinal
motion of particles within the beam take place at a much lower frequency than
in the transverse mode. Also, the beam is normally very long and interacts with
a substantial fraction of the accelerator chamber length, averaging over many
discontinuities. So, transverse motion requires a careful attention if we need to
take into account the presence of walls.

We need to (i) invert the Poisson equation (6) with the appropriate bound-
ary conditions at the walls, and (ii) treat the problem as much as 3D as we
can, since walls act on each particle in the beam within a longitudinal length,

11

compatible with the requirement dictated by Relativity that the �eld emanated
by the valls can reach the particle.
All Poisson inverters, based on direct integration (Brute Force), convolution
(FFT), and Laplacian discrete inversion (LU) can deal with the problem. How-
ever, we have observed that LU seems more promising in dealing with 3D prob-
lems, then we elaborate on the latter. An important observation is that outside
a contour that encompasses the totality of the beam charge, the �eld can be
generally expressed as

� = �0 ln
�r
b

�
+

1X
n=1

�n cos (n� + n)

�
b

r

�n

+

1X
n=1

Vn cos (n� + �n)
�r
b

�n
(16)

Points on this contour can be added to the grid, and then the Laplacian will be
inverted with the extra condition that the values on the contour should match
the coeÆcients �n and Vn needed for Eq. (16).
Using LU as described to deal with walls means that the Laplacian matrix is
not the same for all nodes as in vacuum. It will be the same only for those space
charge nodes that correspond to location in the accelerator where the vacuum
vessel has the same shape. We will then have to invert a number of band-like
sparse matrices at the beginning of computation and store all the inverted L�1.
This can indeed be done o�-line in a pre-processor parallel code, for all runs
that use the same accelerator geometry.

4.5 Vlasov solver

The Vlasov or di�usion equation in principle contains everything one may want
to know about the collective behavior of a multi particle system under the
inuence of electro-magnetic forces, either external or internal. It is a partial
di�erential equation for the space charge density of the particles (q; p; t), with
p and q the canonical position and momentum, and t the time

d

dt
=
@

@t
+ f

@

@q
+ g

@

@p
= 0 (17)

where f and g are the derivatives of the Hamiltonian, a function of the electro-
magnetic �eld

f =
@H

@p
; g = �

@H

@q
(18)

We don't know of any full dimensional Vlasov solvers in particle accelerator
codes, only 2-dimensional.

5 Multi particle tracking codes

Several tracking codes have been written to follow a herd of interacting macro
particles, generated at random over some prescribed distributions, through the
lattice of the accelerator. These codes use maps generated by optics codes, like

12

Mad orMarylie, adding space-charge self-forces. Widely used, full 3-dimensional
codes are
� Orbit[10], developed in a collaboration between Oak Ridge and Brookhaven
National laboratories for the Spallation Neutron Source project. It is a C++,
object oriented code. Fig. 5 shows a plot generated by Orbit of the beam of
SNS in phase space, after a few hundred turns. Fig. 6 shows a second example
of the beam longitudinal phase space foot print during acceleration (this was
done when we were studying the possibility of ramping the energy of the SNS).
The bucket contour is also shown.

Figure 5: Phase space and real space footprints created by Orbit. No accelera-
tion

� Accsim[11], in Fortran, from Triumf laboratory, BC, Canada. It was originally
developed for the proposed Kaon Factory.
� Simpsons[12], in Fortran, from KEK, Japan. This code was originally de-
veloped for the defunct super collider in Texas, and is now being used for the

13

Figure 6: Longitudinal Phase space footprint with acceleration, created by Or-
bit.

Japanese Neutron Spallation Source project.
� Warp[13], in Fortran. Developed and used at the Lawrence Livermore Lab
in California for the Heavy-ion Beam-driven Inertial con�nement Fusion (HIF)
project.
� Track2D and Track3D[14]. In Fortran, from the Rutherford Appleton lab-
oratory, UK. Developed in conjunction with the European neutron spallation
project.
� Impact [15], in C++, object oriented. Written in Los Alamos as part of a
DOE Grand Challenge in Computational Accelerator Physics to simulate linear
accelerators.
� Spink[16]. Developed at BNL to study the acceleration of polarized particles
in the AGS and RHIC. Spink provides three more dimensions to the represen-
tation of a particle, i.e. the components of its spin.

An example of multi particle tracking with space charge is shown in Fig. 7,
produced by Accsim. The �ve sections of the �gure show, in the �rst row from
left to right, the transverse phase space density (horizontal and vertical). In the
second row the transverse \real" space (x; y) is shown and then the longitudinal
space, and above the latter the distribution of the longitudinal space charge

14

force due to a conductive pipe surrounding the beam.

Figure 7: Example of tracking with Accsim

6 Other accelerator problems and issues

Particle accelerator modeling implies many issues to be addressed. Some may
require intensive computing. Let us name a few
� Relativity: Special Relativity is always present in the formulation of the equa-
tions for the motion of particles in the high energy accelerators of interest here,
since the velocity of the particles is close to the speed of light (� � 1). This has
in particular relevance in the treatment of inter-particle forces, since the �eld
propagate from particle to particle at the speed of light, which is comparable to
the speed of the particles themselves (problem of the light cone).
� Independent variable: Space, time? Already mentioned. Most tracking codes
used for high energy accelerators use the longitudinal position of the particle
along its path, s, as the independent variable. This is convenient, since the de-
scription of the lattice is commonly made with a sequence of machine elements
or modules ordered along s. However, for the solution of electro-magnetic prob-
lems, time is a more natural independent variable. Warp and Impact use time.

15

� Instabilities: The particles in an accelerator, under the e�ect of focusing forces
perform oscillations around an equilibrium \reference" orbit. In a circular accel-
erator the frequency of these oscillations is called the betatron tune. Another
tune, the longitudinal or synchrotron tune, is the frequency of oscillations in
the longitudinal direction, in time and energy around a reference (synchronous)
particle. Space charge forces a�ect the oscillations and modify the tunes.
If the tune is in resonance condition with some of the natural frequencies of the
lattice, due e.g. with the periodic encounter by the particle of imperfections
in the machine construction, the beam may become unstable and crash against
the accelerator walls. Study of resonance instabilities by tracking is a very de-
manding task and computer intensive, requiring the numerical solution of both
the transitory and asymptotic behavior of the integral of di�erential equations.

7 Computing

7.1 Methods, languages

In accelerator simulation the amount of computing can be overwhelming and
often could only be one with parallel techniques. For tracking, we are always
using di�erent methods, alone or in combination
� Analytic. Accelerator theory is supported by experimental data that provides
a backbone for computation. Models continuously use theoretical formulation
to provide needed checks. Among others, important is that there are dynami-
cal quantities, or \invariants", that must remain constant during tracking. We
should watch them. Also, often there is a \core" of the beam that obeys a well
known behavior and can be treated analytically, leaving to the numerics to deal
with the details of the \halo".
Accordingly, it is tempting to write a code that at the same time does tracking
and solves by symplectic integration some known equations, to control the be-
havior of the numerical results with the predictions of analysis.
� Particle-in-cell (PIC)[17]. It is one of the most used method to track. Macro
particles are \injected' at random, with various statistical distributions, and
thereafter tracked through the lattice. A reliable PIC model may require 105

to 107 macro particle to represent with good detail a typical halo. Also, if one
wants a good representation of a complicated wall environment, one has to add
a comparable number of wall partitions
� Contours. One can reduce the number of macro particles, putting them on
contours of multi dimensional phase space volumes. Contours propagate in a
well known way. This method reduces by one the dimensionality of the herd,
however it requires a �ne geometrical analysis, to insure among other things
that particles are roughly equidistant (in, say, 5 dimensions), to avoid cluster-
ing that will decrease the accuracy of results. One ends up to the topological
problem of the Convex Simplex.

16

High level language used are
� Fortran 77 or 90. Fortran is still very much used in the community of physi-
cists, much because of its simplicity and because of the vast mathematical li-
braries available, but also because object oriented features may not be so im-
portant for accelerator tracking. Programs in Fortran are simple to develop and
to debug.
� C++. When accelerator simulation is being used for accelerator control, the
object-oriented features of C++ become important. C++ enables a natural
interaction of the software with accelerator database and actual hardware. In
C++ (as used in Orbit) classes describe accelerator elements and functions.
� SuperCode[18]. Due to the speed of modern interpreters, sometimes it proves
convenient to have only part of the simulation code in a compiled form, and in-
terpret part of the program. The driving script can be a C++ fragment that is
being interpreted on the y and can be modi�ed during execution. This feature
is very useful during test runs, to test rapidly di�erent tracking scenarios. Orbit
is currently compiled with SuperCode and is being run using a SC driver shell.

7.2 Parallel computing

Parallel computing is fast becoming a necessity for accelerator modeling, espe-
cially for quasi-real time accelerator control, where speed of response is a must,
but also more in general to deal with PIC codes involving a large number of
macro particles and a complex environment.
Parallelization is useful also in single particle optics code in optimization loops.
After the basic parameters of an accelerator have been de�ned, the next exercise
is to re�ne it to optimize some processes, like the injection or extraction strat-
egy or determine the best position of orbit correction elements. The simulation
code becomes then a subroutine to an optimization code that tries to vary pa-
rameters and �nd solutions by conjugate-gradients or other mathematical tools.
It is obviously a very time consuming process that can be sped up in parallel.

At this point, it is important to make a distinction between linear accelerators
and circular accelerators. Linacs are \single pass" devices. In them, a beam
is injected, accelerated and extracted and doesn't pass twice through the same
location in the accelerator lattice. Destructive instabilities, if any, develop very
fast and with the characteristics of beam \break-up". In linacs, it is in general
not too expensive to model in detail the con�guration of the wall boundaries
and use a very large herds of macro particles.
Comparatively, circular accelerators must track particles for many turns, rang-
ing from about 103 in the SNS to a few 106 in storage rings like RHIC. Suppose
that the lattice contains from 300 (SNS) to 3,000 (RHIC) maps and that the
nodes at which space charge forces are updated are from 100 to 1,000 per turn,
one can see how the amount of computing is large and one could barely a�ord
the luxury of �ne partitioning the walls or using big herds. In circular machines
the instabilities may develop slowly and this per se require careful tracking in
unstable regimes.

17

Some of the tracking problems for accelerator simulation are \embarrassing
parallel". E.g. in a PIC code it is almost immediate to break up the herd
of macro particles that constitute the beam in smaller herds, assigning every
sub-herd to a \child" processor, with a \parent" processor polling results at
given intervals or locations along the lattice to perform collective calculations,
like for space charge. The eÆciency of this procedure depends on the relative
speed of performing given mathematical operations as compared with the time
of exchanging informations among the nodes of the parallel computer. The net
result is that in general, the total computer time is inversely proportional to
the number of nodes only for a few nodes, and tends to saturate with increasing
node number[19].
Less embarrassing and much more complex parallel computing issues for accel-
erator simulation involve the optimization of programming loops and procedures
to solve speci�c problems, like Poisson or Vlasov solvers. The parallel optimiza-
tion of the algorithms, in these cases, is based on the observation that solving
Eqs. (6) or (17) can be reduced to the inversion of a linear operator for the
speci�c accelerator node[20], that repeats from turn to turn, and ultimately to
parallel matrix multiplication.

Parallel paradigms depend somewhat on the platform being used, on the oper-
ating system, on the popularity and support of a given language, and it is also
a matter of personal taste. The most popular libraries are
� MPI (Message Passing Interface)[21],
� PVM (Parallel Virtual Machine)[22].

7.3 Graphics

Graphics representation of the results of simulation is very important. We can
recognize three phases of the visualization process
� Post Mortem. Some of computer modeling graphics from simulation is per-
formed after the calculations are done. At this point, data �les are read and
plotted. There will be always a need for this kind of post-mortem plotting.
� Interactive. It is highly desirable to have an interactive graphics that would
show the results of a simulation, while the computing is in progress. In par-
ticular, using SuperCode, interaccting plotting would facilitate one to stop and
restart calculation and change parameters to steer the results in the desired
direction. A continuous pipe of calculation output to graphic is needed, that
would also create an e�ective animation.
� Graphic �rmware used for calculation. On some platforms, the graphic
�rmware is very eÆcient and fast. Some mathematical manipulations and even
calculations can be e�ectively done using these features. Examples are the cal-
culation of areas by pixel count and the mapping of particle densities with colors,
where numerical codes associated with colors can directly enter into calculations.

18

7.4 Hardware

For sequential running of programs, workstations are the most used platforms.
For parallel computing, PC clusters are rapidly becoming a popular choice,
because of their limited cost and modularity. For accelerator simulation the
best option at this time seems to have a number of nodes between 8 and 256,
with a large distributed memory.
we should also mention the possibility of greatly speeding up computing by
complementing a parallel structure with special hardware, that can solve directly
a given problem like the MD-grape card[23]. This card calculates directly the
forces acting among n-bodies, either molecules, planets or charged particles, and
can be invoked by a code in place of a subroutine.

8 Examples of Implementation: Orbit

John Galambos implemented a parallelization with PVM of the tracking code
Orbit, using up to 7 533MHz alpha chip processors[19]. In this simulation
100,000 macroparticles were used in a Spallation Neutron Source accumula-
tor ring lattice. Transverse cpace charge was calculated with FFT on a 128x128
mesh.
We repeated his example on the Brookhaven Linux Cluster (BLC) with PVM
and 4 processors (Pentium Pro), then we started to implement a MPI version
of Orbit, �rst on an IBM SPARC machine with 32 processors and then on the
CLC Cluster (PC Farm) at Brookhaven, using up to 36 children processors. The
CLC is our cluster of choice. We are in the process to add 86 more processors to
that cluster. During our timing tests we didn't share the cluster with any other
user. With the CLC we used the option -nolocal with the mpirun command to
restrict the operation of the parent (a much slower machine, as it can be seen
from the table) to synchronization purposes. Running Orbit also on the parent
resulted in considerably slowing down the computation.
Up to the maximum number of 32 processors, the computation speed (wall
clock) of the CLC is proportional to the number of processors. Also the IBM
SPARC speed is proportinal to te number of processors in dealing with the
trivial problem in Orbit. The overall speed of this latter much more expensive
machine is greater, due to the di�erent architecture of the connections. Archi-
tecture and Communication Speci�cations of the IBM SPARC and the CLC
Cluster are given in Table 8 Timing results of Orbit runs performed on the CLC
cluster are given in Table 8. The total number of macros in the �rst 12 runs,
with and without space charge calculation was 1:6 106. A further run with 25
million macros took somthing over 1,000 seconds. Running with continuous
injection up to such many macros as a �nal number for 1,254 turns and using
26 processors would have ideally taken 3 days in the CLC cluster. A number
of macros exceeding 25 106 is not at the present time possible due to memory
limits.

19

Table 1: Comparison of Speci�cations for two Parallel Machines.

IBM v60 Cluster

32 Nodes. Per Node:
4 CPU's 4 Gigabytes Memory per Node Shared Memory

CPU specs: IBM Power3 Processors 375 MHz
1.5 GFlops/CPU - peak 64 kBytes L1 Cache 8 Mbytes L2 Cache

Interconnection: SP Switch TB3MX adapters
133 MB/s Bandwith per link 24 �sec latency

File System: GPFS Shared File System

MPI: IBM implementation of MPI 1.2 compliant

Brookhaven CLC Cluster

Nodes (clc000):
2 CPU's 256 MBytes RAM

CPU specs: Intel Pentium II (Klamath)
300 MHz 512 kBytes L2 Cache

Nodes (clc001-clc018): 2 CPU's 512 MBytes RAM

CPU specs: Intel Pentium III (Katmai)
500 MHz 512 kBytes L2 Cache

Interconnection: Cisco Catalyst 2900 Switch 100 MBit/sec Fast Ethernet

File System: NFS
MPI: mpich implementation 1.2 compliant

20

Table 2: Orbit timing (wall clock) on the CLC Cluster. 1 Turn.

With Space Charge No Space Charge

Processors nMacrosPerTurn Elapsed time Elapsed time
(parent + children) per Node sec sec

2 1.6 105 189 61
3 0.8 105 105 30
5 0.4 105 68 17
9 0.2 105 48 9
17 0.1 105 43 6
33 0.05 105 37 3

2 1.6 106 1934 818
3 0.8 106 936 353
5 0.4 106 491 176
9 0.2 106 253 85
17 0.1 106 142 42
33 0.05 106 88 23

26 25 106 1161

Comparable results obtained with the IBM machine are reported in Table 8.
Clearly, the IBM machine is faster than the CLC, because of a much faster con-
nection within the boxes and the partially shared memory, however, its speed
dopesn't appear so proportional to the number of processors.

9 Another Example: Spink

Spink is a tracking code specialized in high energy polarized protons[16]. A
proton in Spink has the 6 phase space coordinates shown in Eq. (4), as in Orbit-
like tracking codes, plus 3 spin coordinates (the components of a real unitary
vector, the spin vector). Spink reads the lattice and the transfer maps of a
high energy accelerators and produces in addition spin matrices, that describe
the rotation of the spin vector during particle circulation and acceleration that
eventually may lead to loss of polarization. The rotation of the spin by an angle
�is described with a 3x3 matrix

R = I cos�+W
1� cos�

!2
+A

sin�

!
(19)

with I a unitary matrix, W a symmetric matrix, and A an antisymmetric
matrix expressed as a function of the components of the precession axis. In

21

Table 3: Orbit timing (wall clock) on the IBM Cluster.

One Turn With Space Charge Space Charge Disabled

Nodes nMacrosPerTurn Elapsed time Elapsed time
(parent + children) per Child sec sec

2 1.50 105 48 18
3 0.75 105 24 8
4 0.50 105 16 5
6 0.30 105 13 3
16 0.10 105 16 1

2 1.50 106 564 251
3 0.75 106 281 118
4 0.50 106 209 91
6 0.30 106 124 51
16 0.10 106 42 12

2 Turns With Space Charge Space Charge Disabled

Nodes nMacrosPerTurn Elapsed time Elapsed time
(parent + children) per Child sec sec

2 1.50 105 143 48
3 0.75 105 70 22
4 0.50 105 47 14
6 0.30 105 31 8
16 0.10 105 14 7

2 1.50 106 1653 702
3 0.75 106 821 322
4 0.50 106 605 251
6 0.30 106 358 143
16 0.10 106 121 39

22

SPINK, while the orbit maps are considered \thick", the spin maps are consid-
ered \thin", producing an instantaneous spin precession.

In a collider like RHIC, that is the machine on which we are interested, the
polarized proton beam has a relatively low intensity, so collective space charge
e�ects are important only to describe beam-beam collisions between the two
counter-rotating beams. However, since to well represent the beam one has to
track many particles and for a very large number of turns, up to millions, paral-
lel computing is important. Except for beam-beam e�ects, as noted, tracking of
protons with spin is at �rst an embarassing problem, with each computer node
tracking a subset of representative macroparticles, and the parent collecting and
averaging data at given intervals.
Fig. 8 shows an example of spin tracking in RHIC. Crossing spin resonances
produces some loss of polarization. The polarization is recovered though, be-
cause there are two Siberian Snakes in the ring. The �gure shows two curves,
calculated with a perfect lattice in RHIC, and with a lattice where the various
machine element have some errors in position and �eld.
Fine and sometimes crucial details of the dynamics of the beam lead to algo-
rithms that can be e�ectively dealt with in parallel. Some of these e�ects, that
can be very important for the preservation of polarization at high energy arise
from the fact that the lattice of the machine, in this case RHIC, can be varied
while the beam is being tracked. The two main e�ects, non linear in nature, are
related to the processes of (i) acceleration, and (ii) tune change.
To understand this point, recall that all transformation maps for the orbit come
from optics programs, like Mad or Teapot, described earlier, that are static in
nature. All machine functions that are building blocks of the algorithms being
used in tracking of both orbits and spin are normally calculated in these codes
and stored in some external �le. If something is varied in the machine while the
tracking takes place, as it automatically happens during the acceleration pro-
cess or because we want to vary some parameters (e.g. the betatron tunes) on
the y, still the precalculated machine functions would not change, with results
that may be then somewhat wrong. A strategy to correct for this behaviour
is to dedicate a number of processors to dynamically change and update the
machine lattice and pipe the results to Spink while other processors are doing
the tracking.

10 Acknowledgments

We are indebted to Profs. James Glimm and Yuefan Deng of Stony Brook for
stimulating discussions in particular on the LU problem. James Davenport of
Brookhaven is helping us in pursuing parallel computing with the clusters of the
Center for Data Intensive Computing. Still at Brookhaven, Mike Blaskiewicz,
author of the FFT implementation of the Poisson solver in Orbit, Dan Abell,
Alexei Fedotov, Nicolay Malitsky, smart users of Orbit, always participate in
discussions on the code and on how to improve the physics in it. Robert Walkup

23

of IBM was invaluable for transforming Orbit, already made parallel with PVM
by John Galambos into an IBM MPI code. At IBM, Gyan Bhanot showed us
how to formulate in practice the LU Poisson Inversor. Je� Holmes at Oak Ridge
maintains Orbit and we use often his insight on how to improve and understand
the algorithms.

References

[1] J.R.Alonso, for the SNS Collaboration The Spallation Neutron Source
Project Proc. PAC99: 1999 Particle Accelerator Conference, Editors:
A.Luccio and W.MacKay, IEEE 1999, p.574

[2] M. Harrison The Commissioning Status of RHIC Proc. PAC99, loc.cit., p.6,
1999

[3] K.T.McDonald Muon Collides: Status of R & D and Future Plans Proc.
PAC99, loc.cit., p.310, 1999

[4] H.Grote and F.Ch Iselin The Mad Program, Version 8.19 CERN/SL/90-13,
Geneva 1996

[5] A.J. Dragt et al Marylee 3.0 User's Manual University of Maryland Physics
Department Report 1999

[6] L.Schachinger and R.Talman Manual for the Program Teapot. Noninterac-
tive Fortran Version/ Particle Accelerators, 22, 35, 1987

[7] N.Malitsky and R.Talman AIP Conf. Proceedings 391, 1996

[8] A.U.Luccio and W-T Weng, Editors Workshop on Space Charge Physics in
High Intensity Hadron Rings AIP Conf. Proc. 448, 1998

[9] A.W. Chao Physics of Collective Beam Instabilities in High Energy Acceler-
ators Wiley, NY 1993

[10] J.D.Galambos, J.A.Holmes, D.K.Olsen, A.Luccio, J.Beebe-Wang Orbit
User Manual Version 1.10 SNS/ORNL/AP Technical Note 011, Rev.1, 1999

[11] F.W. Jones, G.H. Mackenzie and H. Sch�onauer Accsim - A Program to
Simulate the Accumulation of Intense Proton Beams Particle Accelerators
31, p.199, 1990

[12] S.Machida et al. Space Charge E�ects in Low Energy Proton Synchrotrons
Nucl. Instrum Methods, A309 (1991) 43 also: The Simpsons User's Manual
SuperCollider Laboratory, Dallas, TX, 1992

[13] A.Friedman, D.P.Grote and I.Haber Three-dimensional particle simulation
of heavy-ion fusion beams Phys. Fluids B: Plasma Physics 4, 2203, 1992

24

[14] C.R. Prior The Multi-Particle Code Track2D: A Guide for Users CLRC,
Rutherford Appleton Laboratory, 1993

[15] R.Ryne et al. Program Impact Proc. Linac Conf., Chicago, IL, 1998

[16] Alfredo U. Luccio Spin Tracking in RHIC (Code Spink) in: Trends in Col-
lider Spin Physics World Scienti�c 1997, p.235 also: A.Luccio, A.Lehrach,
J.Niederer, T.Roser, M.Syphers, and N.Tsoupas New Capabilities of the Spin
Tracking Code Spink Proc. PAC99, loc.cit., p.1578, 1999

[17] R.W.Hockney and J.W.Eastwood Computer Simulation Using Particles
Adam Hilger, IOP Publishing, New York, 1988

[18] S.W. Haney Using and Programming the SuperCode Lawrence Livermore
Lab. Rept. July 21, 1995

[19] J.Galambos Parallel Computing with Orbit ORNL Accelerator Physics
Memo, August 1999

[20] W.H.Press et al. Numerical Recipes Cambridge University Press 1994

[21] W.Gropp et al. MPI: The Complete Reference MIT Press, 1998

[22] A.Geist et al. PVM: Parallel Virtual Machine MIT Press, 1994

[23] T.Marumi, R.Susukita, T.Ebisuzaki, G.McNiven, B.Elmegreen Molecu-
lar Dynamics Machine: Special-Purpose Computer for Molecular Dynamics
Simulation Molecular Simulation, 1999, Vol.21, pp.401-415

25

370 390 410 430
Gγ

0.5

0.6

0.7

0.8

0.9

1
<S

y>

Figure 8: Example of spin tracking with Spink. The vertical component of the
spin vector is shown in a RHIC lattice with and w/o errors.

26

